AI

FastLabel、医療AI用DICOMアノテーションツールα版をリリース

AI開発を効率化するデータプラットフォームを開発・提供するFastLabel株式会社(本社:東京都品川区、代表取締役CEO:上田英介、以下「FastLabel」)は、医療分野で扱われるDICOM(Digital Imaging and COmmunications in Medicine)規格に対応したアノテーションツールのアルファ版をリリースしたと発表しました。

近年、医療技術の発達によって読影が必要な医療画像の数が増え、診断する医師の仕事は増えていますが医師の数は増えないため、作業の効率化が課題となっています。そのため、診断の質を高めつつ医師の負担を軽減するために、AIによる画像診断支援が注目されています。医療分野のAI開発において、特に高品質な教師データが大量に必要となります。しかし、医療分野に特化した教師データを作るためのアノテーションツールがなく、教師データの不足や品質の問題により医療AIの研究開発が進まないという課題がありました。

今回、FastLabelが提供するAIデータプラットフォーム「FastLabel」は、医療AI開発の効率化を実現するため、CTやMRIなど医療画像診断AIで使われるDICOM形式に標準対応しました。DICOMプロジェクトでは、検査画像を一つのタスクとして管理してアノテーションできます。サムネイルバーと、ビューアーで構成されており、シリーズ単位で画像や情報を表示できます。またDICOMのTag情報も確認、検索可能です。今回アルファ版で対応した規格はCTの胸部ですが、今後はMG、MR、SEGや他の箇所などにも標準対応していく予定です。また自動アノテーション機能の開発も予定しており、医師の負担を軽減し、高品質な教師データの作成を支援します。

関連記事

  1. FRONTEOが医学論文探索AIソフトウェアで特許を取得

  2. 画像診断支援AI「EIRL」シリーズ、総解析件数が1,000万を突破

  3. ピースウィンズ・ジャパン、福祉施設向けの感染症対策支援ツールを公開

  4. Jmeesと国立がん研究センター東病院が共同開発した「内視鏡手術支援プ…

  5. 会話をカルテ化する「kanaVo」、オンライン診療対応モデルをリリース…

  6. 「Amanogawa」、三重大学大学院医学系研究科で導入

最近の記事
PAGE TOP